Passer au contenu

/ Department of Physics

Je donne

Rechercher

Navigation secondaire

Experts in: Low luminosity stars, subdwarfs and brown dwarfs

Doyon, René

DOYON, René

Professeur titulaire

Professor René Doyon’s research activities are focussed on the development of state-of-the-art astronomical instrumentation for various ground- and space-based observatories. He is also actively involved in various observational programs for detecting and characterizing brown dwarfs, exoplanets and young low-mass stars. On the instrumentation front, he leads several infrared instrumentation projects (camera and spectrograph) for the Observatoire du Mont-Mégantic. He is co-investigator of the Gemini Planet Imager, which has been operational since 2013.

He is also co-principal investigator of SPIRou, a high-resolution infrared spectrograph for the Canada-France-Hawaii Telescope. Scheduled for operation in 2015, SPIRou is designed to detect terrestrial (Earth-like) planets within the “habitable zone” of low-mass stars in the solar neighborhood. He is also principal investigator of NIRISS, one of the four scientific instruments on the James Webb Space Telescope.

Professor Doyon is the Director of the Institute for Research on exoplanets.

Read more...

Full Profile

Lafrenière, David

LAFRENIÈRE, David

Professeur titulaire

The study of exoplanets aims at establishing the prevalence and diversity of planetary systems in our galaxy, understanding how these systems form and evolve, comprehending the physics involved in their atmosphere and interior and, ultimately, detecting traces of life elsewhere in the universe. This is the main interest of Professor Lafrenière's group. The group's work is primarily performed using infrared imaging techniques that allow them to detect the planets directly, and then measuring their physical properties. To successfully "see" these very faint planets located right next to their host star, which can be several million times brighter, it is necessary to continually develop new observation and image processing techniques and even to build new instruments. With current technology, it is possible to detect gas giant planets with orbits of the outer solar system's size or larger.

In addition to direct imaging of planets, Professor Lafrenière's research group is also interested in the characterization of "hot Jupiter" planets by using transit/eclipse spectrophotometry and transit timing. The group is also involved in studies of brown dwarfs, in stellar and substellar multiplicity studies, and in searching for new young low-mass stars in the solar neighborhood.

Read more...

Full Profile