Experts in: Molecular dynamics and particle methods
CÔTÉ, Sébastien
Chercheur invité
GAUDREAULT, Roger
Chercheur invité
- Biological and medical physics
- Materials science
- Molecular dynamics and particle methods
- Colloids
- Green chemistry
- Fibrils (amyloids)
- Structure of biomolecules
- Protein-Ligand Interactions
- Alzheimer’s Disease
- COVID-19
Dr. Gaudreault’s expertise notably spearheaded him to develop an integrated innovation Green Chemistry approach based on recycled fibres. His scientific and applied background helped developed strong partnerships between academia and industry. He has been a member of the Centre in Green Chemistry and Catalysis (CGCC) since 2011 and associate member of the Quebec Centre for Advanced Materials (QCAM) since 2018.
Dr. Gaudreault’s scientific interests include; green chemistry, Alzheimer's Disease, COVID-19, molecular modelling, kinetics of colloids, chemistry of pulping/bleaching and papermaking, recycling, corrosion inhibition, biomolecules and biomaterials.
LEWIS, Laurent J.
Professeur émérite
- Numerical simulation
- Materials science
- Computational techniques, simulation
- Amorphous semiconductors, metals, and alloys
- Disordered solids
- Glasses
- Laser-beam impact phenomena
- Molecular dynamics and particle methods
- Nanoscale materials and structures: fabrication and characterization
- Thermal properties of small particles, nanocrystals, nanotubes and other related systems
My research program examines the general theme of computational physics of materials. We use powerful computers to probe the structural and other behaviour and properties of materials, and the "structure-function" relationship. Our preferred approach is molecular dynamics, which involves integrating the equations of motion of a system of atoms under the effect of forces from "potentials"; they may be generic (Lennard-Jones, for instance), empirical or semi-empirical, or even ab initio. The size of the systems depends on the potential used and varies from tens or hundreds of atoms to several million.
We study a vast range of problems, but we are particularly interested in the following ones, just as an example: (i) laser ablation and laser-material interactions; in this case we are trying to understand how matter reacts to powerful, short laser pulses - ejection mechanisms, structural modifications of the target, properties of the ablation plume, etc. (ii) disordered, amorphous or vitreous materials; in this field, we are trying to understand the short-, medium- and long-term structure of materials like amorphous silicon, metallic glass, etc. (iii) thermal properties of nanoscopic materials; we are trying to determine how heat dissipates near nanometric structures and how it moves in molecular junctions between nanoparticles, in particular.
MOUSSEAU, Normand
Professeur titulaire
- Computational techniques, simulation
- Materials science
- Biomolecules: structure and physical properties
- Science and government
- Molecular dynamics and particle methods
- Nanoscale materials and structures: fabrication and characterization
- Energy resources
- Science and society
- Protein folding: thermodynamics, statistical mechanics, models, and pathways
- Climate change policies
My work deals with the computational study of the behaviour of matter at the atomic level. I am interested in how proteins are assembled into neurotoxic structures associated with degenerative diseases like Alzheimer's and Parkinson's. I also study the formation of nanostructures, such as the assembly of silicon nanowires under a gold droplet and the relaxation of disordered systems like glass and amorphous materials. All these systems are characterized by evolution at the atomic level over long periods, i.e. seconds or more. To be able to track this evolution, I am also working on the development of accelerated algorithms for following atomic movements over experimental times. The algorithms developed in my group are among the most efficient in the world, allowing us to study phenomena that are otherwise not easily accessible.
I am also interested in energy and natural resources issues, from shale gas and crude oil to mining resources. I have published a number of books for the general public on the topic, and supervised some students in this field.
In addition, I host a popular science program called La Grande Équation, broadcast on Radio Ville-Marie.
Lastly, I hold the Canada Research Chair in Computational Physics of Complex Materials.