Passer au contenu

/ Department of Physics

Je donne

Rechercher

Navigation secondaire

Expert in: Collective excitations in electronic structure of nanoscale materials

Leonelli, Richard

LEONELLI, Richard

Professeur titulaire

When a semiconductor material absorbs a photon, an electron is excited into the conduction band, leaving a hole in the valence band. The Coulomb interaction between the electron and the hole generates a bound state called an exciton, which largely controls the optical properties of semiconductors. In addition, when the environment is structured on a nanometric scale, the optical response of the semiconductors is radically altered by quantum confinement.

My research program revolves around the dynamics of excitons when they are created in nanostructured environments, so as to describe how the energy is absorbed and redistributed as part of a representation in terms of collective excitations. Although the subject is fundamental in nature, it is closely related to the development of excitonics, an emergent field that aims to design and manufacture better optical devices for applications ranging from lighting to quantum computing.

Read more...

Full Profile