Experts en : Étoiles supergéantes
MOFFAT, Anthony F. J.
Professeur émérite
- Astronomie fondamentale
- Pulsasions, oscillations et astroseismologie
- Caractéristiques et propriétés stellaires
- Perte de masse et vents stellaires
- Étoiles supergéantes
Les travaux de professeur émérite de l’université de Montréal Anthony Moffat sont axés sur l’étude des étoiles massives. Les étoiles massives comprennent toutes les étoiles de masse initiale au-delà de 8 masses solaires, qui s'effondrent sur elles-mêmes comme supernovae à la fin de leur vie de « brûlage » nucléaire, laissant des étoiles à neutrons ou des trous noirs. Puisque le rendement en lumière d'une étoile normale va environ comme la cube de sa masse, une seule étoile de 100 masses solaires peut émettre l'équivalent de la lumière d'un million de soleils. Au-delà de 20 masses solaires, les étoiles massives se distinguent par leur vent fort, jusqu’à un milliard de fois plus important que celui du soleil, qu’on croît être déjà très important (comètes, aurores, …). Ainsi, bien que rares et de court temps de vie, les étoiles massives livrent des quantités énormes de rayonnement, la plupart en ultraviolet mortel, et de la matière enrichie en éléments lourds, au milieu interstellaire, prête à former encore plus d'autres générations d`étoiles et planètes comme la Terre. Ce processus était surtout important tôt dans l'Univers, quand les toutes premières étoiles se formaient, toutes très massives.
Les buts principaux de mes recherches sont à explorer :
- si la pression de la radiation seule peut accélérer les vents extrêmes des étoiles pré-supernova, i.e. pendant la phase de brûlage de He en tant qu’étoiles Wolf-Rayet, en se servant du premier télescope spatial canadien à bord du microsatellite MOST,
- en construisant un système de microsatellites (BRITE-Constellation) pour examiner les propriétés d`instabilité à très faible ampleur d'un grand échantillon d'étoiles lumineuses,
- la façon exacte avec laquelle les vents s'accélèrent autour des étoiles lumineuses et chaudes,
- le rôle des champs magnétiques en accélérant leurs vents,
- le mystère de comment les grains de poussière se forment et survivent dans l’environnement hostile des étoiles chaudes et lumineuses,
- la limite supérieur pour les étoiles les plus massives (est-elle de 100, 150 ou 200 masses solaires dans l’Univers actuel ?),
- le contenu en étoiles WR dans toute notre Galaxie, la plupart desquelles sont cachées par la poussière interstellaire,
- et si les étoiles WR explosent vraiment en supernova, menant dans certains cas au phénomène le plus énergétique (bien que de courte durée) dans l'Univers, les sursauts de rayons gammas.
RICHER, Jacques
Chercheur invité
- Perte de masse et vents stellaires
- Structure stellaire, intérieurs, évolution, nucléosynthère et ages
- Formation d'étoiles
- Étoiles supergéantes
Développement et application à différentes catégories d'étoiles du code d'évolution stellaire de Montréal (xevol). Ce code prend en compte la diffusion de 30 éléments (incluant certains isotopes) couplés entre eux, en incluant les forces radiatives spécifiques à chaque élément. La particularité unique de ce code est que ces forces radiatives sont calculées à chaque point dans l'étoile, à chaque instant, à partir des spectres détaillés (définis sur 10000 fréquences) de chaque élément, fournis par le projet OPAL, ou calculés par notre groupe dans le cas des éléments traces Li, Be et B. Les forces radiatives sont donc sensibles aux changements de structure de l'étoile, et aux changements de composition locaux produits par la diffusion et par les réactions nucléaires, et aux interactions entre éléments qui en découlent. Le code est présentement appliqué à l'étude des étoiles de type HgMn et AmFm chaudes, dans le but d'identifier leurs caractéristiques structurelles communes et de mieux comprendre la physique de leurs atmosphères, dans les limites permises par le code xevol. Les calculs seront comparés et/ou raccordés à des résultats obtenus par une analyse détaillée de leurs atmosphères avec un code de transfert radiatif (pour atmosphère chimiquement homogène ou stratifiée). Cette partie du travail sera faite en collaboration avec Georges Alecian (Meudon) et Francis LeBlanc (Moncton), dans les limites de leur disponibilité.