Passer au contenu

/ Département de physique

Rechercher

Navigation secondaire

Experts en : Perte de masse et vents stellaires

MOFFAT, Anthony F. J.

Professeur émérite

Les travaux de professeur émérite de l’université de Montréal Anthony Moffat sont axés sur l’étude des étoiles massives. Les étoiles massives comprennent toutes les étoiles de masse initiale au-delà de 8 masses solaires, qui s'effondrent sur elles-mêmes comme supernovae à la fin de leur vie de « brûlage » nucléaire, laissant des étoiles à neutrons ou des trous noirs. Puisque le rendement en lumière d'une étoile normale va environ comme la cube de sa masse, une seule étoile de 100 masses solaires peut émettre l'équivalent de la lumière d'un million de soleils. Au-delà de 20 masses solaires, les étoiles massives se distinguent par leur vent fort, jusqu’à un milliard de fois plus important que celui du soleil, qu’on croît être déjà très important (comètes, aurores, …). Ainsi, bien que rares et de court temps de vie, les étoiles massives livrent des quantités énormes de rayonnement, la plupart en ultraviolet mortel, et de la matière enrichie en éléments lourds, au milieu interstellaire, prête à former encore plus d'autres générations d`étoiles et planètes comme la Terre. Ce processus était surtout important tôt dans l'Univers, quand les toutes premières étoiles se formaient, toutes très massives.

Les buts principaux de mes recherches sont à explorer :

  1. si la pression de la radiation seule peut accélérer les vents extrêmes des étoiles pré-supernova, i.e. pendant la phase de brûlage de He en tant qu’étoiles Wolf-Rayet, en se servant du premier télescope spatial canadien à bord du microsatellite MOST,
  2. en construisant un système de microsatellites (BRITE-Constellation) pour examiner les propriétés d`instabilité à très faible ampleur d'un grand échantillon d'étoiles lumineuses,
  3. la façon exacte avec laquelle les vents s'accélèrent autour des étoiles lumineuses et chaudes,
  4. le rôle des champs magnétiques en accélérant leurs vents,
  5. le mystère de comment les grains de poussière se forment et survivent dans l’environnement hostile des étoiles chaudes et lumineuses,
  6. la limite supérieur pour les étoiles les plus massives (est-elle de 100, 150 ou 200 masses solaires dans l’Univers actuel ?),
  7. le contenu en étoiles WR dans toute notre Galaxie, la plupart desquelles sont cachées par la poussière interstellaire,
  8. et si les étoiles WR explosent vraiment en supernova, menant dans certains cas au phénomène le plus énergétique (bien que de courte durée) dans l'Univers, les sursauts de rayons gammas.
Lire plus…

Profil complet

St-Louis, Nicole

ST-LOUIS, Nicole

Professeure titulaire

Mes travaux de recherche portent sur le vent des étoiles les plus massives. À cause de leur grande luminosité atteignant un million de fois celle du Soleil, ces étoiles perdent une fraction significative de leur masse au cours de leur vie. Ce vent stellaire n'est pas symétrique et homogène. Non seulement contient-il des inhomogénéités à petites échelles s'apparentant à la turbulence mais dans certains cas, on y retrouve également des structures à grande échelle. Ces dernières sont particulièrement intrigantes car elles sont engendrées par un mécanisme encore non-identifié se produisant à la surface de l'étoile.

Les mécanismes possibles inclus les champs magnétiques ou les pulsations, deux processus physique importants pour l'évolution des étoiles massives mais pour lesquels nous possédons encore très peu d'information.

Les conséquences de ces structures à grande échelle sur les données observables (spectre, photométrie, taux de polarisation) peuvent aussi nous aider à déterminer un paramètre fondamental de ces étoiles: la vitesse de rotation. Cette donnée importante est habituellement impossible à mesurer pour les étoiles massives que j'étudie car leur surface est complètement enfouie derrière le vent très dense. Les structures à grande échelle étant attachées à la surface, l'identification d'une période dans les variations du spectre ou de la lumière de l'étoile nous permet de déduire la vitesse de rotation.

Lire plus…

Profil complet