Ahmad Hamdan
- Professeur agrégé
-
Faculté des arts et des sciences - Département de physique
Complexe des sciences office B-4423
Web : LinkedIn
Web : Google Scholar
Web : Autre site web
Licence
2008
, Physique , Université Libanaise (Liban)
Master
2010
, Physique , Université Henri Poincaré Nancy I (France)
Doctorat
2013
, Physique , Université de Lorraine (France)
Education Programs
- Fundamental and Applied Sciences
- Fundamental and Applied Sciences
- Fundamental and Applied Sciences
- Fundamental and Applied Sciences
- Fundamental and Applied Sciences
- Fundamental and Applied Sciences
- Fundamental and Applied Sciences
Courses
- PHY1441 Électromagnétisme
- PHY1501 Introduction à la physique expérimentale
- PHY1502 Introduction à la physique expérimentale
Areas of Expertise
- Physics of plasmas and electric discharges
- Electric discharge in liquids and solids
- Plasma-material interactions
- Plasma diagnostic techniques and instrumentation
- Nanoscale materials and structures: fabrication and characterization
- High-frequency and RF discharges
- Plasma production and heating by laser beams
Responsabilities and outreach Expand all Collapse all
Activités au sein d’organismes ou d’entités de l’institution
Student supervision Expand all Collapse all
Décharge électrique à l'interface de deux liquides : application à la synthèse de nanoparticules
Thèses et mémoires dirigés
/
2022
-
2022
Évolution statistique des caractéristiques électriques des décharges Sparks dans les liquides diélectriques
Thèses et mémoires dirigés
/
2021
-
2021
Décharge à courant alternatif (AC) dans l’air et en contact avec l’eau : caractérisation fondamentale et application au traitement des eaux
Thèses et mémoires dirigés
/
2021
-
2021
Décharges Sparks dans les liquides diélectriques : caractérisation et application à la synthèse de nanoparticules
Thèses et mémoires dirigés
/
2020
-
2020
Research projects Expand all Collapse all
Regroupement québécois sur les matériaux de pointe (RQMP) Projet de recherche au Canada / 2022 - 2029
Lead researcher :
François Schiettekatte
Co-researchers :
Christian Reber
,
Sjoerd Roorda
,
Michel Côté
,
Richard Leonelli
,
Normand Mousseau
,
Antonella Badia
,
Richard Martel
,
Andrea Bianchi
,
Jean-François Masson
,
Luc Stafford
,
William Witczak-Krempa
,
Delphine Bouilly
,
Ahmad Hamdan
,
Nikolay Kornienko
,
Audrey Laventure
,
Philippe St-Jean
,
David Sénéchal
,
Nikolas Provatas
,
Louis L. Taillefer
,
Clara Santato
,
Fabio Cicoira
,
Lilian Childress
,
Michel Meunier
,
Ludvik Martinu
,
Anne-Marie Kietzig
,
Michel R. Wertheimer
,
Jolanta Klemberg-Sapieha
,
Jan Dubowski
,
Hong Guo
,
Mark Sutton
,
Peter H Grutter
,
R. Bruce Lennox
,
Michael Hilke
,
Paul William Wiseman
,
Guillaume Gervais
,
Bradley J. Siwick
,
Edward Sacher
,
Arthur Yelon
,
David Ménard
,
Yves-Alain Peter
,
André-Marie Tremblay
,
Claude Bourbonnais
,
Denis Morris
,
Dominique Drouin
,
René Côté
,
Patrick Fournier
,
Vincent Aimez
,
François Boone
,
Serge Charlebois
,
Frédéric Sirois
,
Dominic H Ryan
,
Patanjali Kambhampati
,
Richard Chromik
,
Thomas Szkopek
,
Walter Reisner
,
William A. Coish
,
David Cooke
,
Jack Clayton Sankey
,
Oussama Moutanabbir
,
Richard Arès
,
Luc Fréchette
,
Jeffrey Quilliam
,
Paul G. Charette
,
Stéphane Kéna-Cohen
,
Kirk H. Bevan
,
Tamar Pereg-Barnea
,
Hassan Maher
,
Ion Garate
,
Julien Sylvestre
,
David Danovitch
,
Yelena Simine
,
Stefanos Kourtis
,
Songrui Zhao
,
Kartiek Agarwal
,
Stephan Reuter
,
Samuel Cole Huberman
Funding sources:
FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT)
Grant programs:
PVXXXXXX-(RS) Programme de regroupements stratégiques
Nouveaux procédés basés sur un réacteur-injecteur de nanoparticules pour le dépôt par plasma de couches minces nanocomposites multifonctionnelles (RI-plasma) Projet de recherche au Canada / 2021 - 2025
Lead researcher :
Luc Stafford
Funding sources:
FRQNT/Fonds de recherche du Québec - Nature et technologies (FQRNT)
Grant programs:
PV113724-(PR) Projets de recherche en équipe (et possibilité d'équipement la première année)
Infrastructure de recherche sur les plasmas multiphasiques Projet de recherche au Canada / 2021 - 2025
Lead researcher :
Ahmad Hamdan
Funding sources:
Université de Montréal
Grant programs:
PVXXXXXX-FEI sans restriction
Plasmas in- and in-contact with liquids: fundamental investigations and applications in nanomaterial synthesis and liquid processing Projet de recherche au Canada / 2018 - 2024
Lead researcher :
Ahmad Hamdan
Funding sources:
CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG)
Grant programs:
PVXXXXXX-(DGECR) Tremplin vers la découverte
Bulk synthesis of nanomaterials and plasma-based techniques Projet de recherche au Canada / 2020 - 2021
Lead researcher :
Ahmad Hamdan
Co-researchers :
Min Suk Cha
Funding sources:
King Abdullah University of Science and Technology
Grant programs:
Supplément COVID-19 CRSNG_Plasmas in and in contact with liquids: fundamental investigations and applications in nanomaterial synthesis and liquid processing Projet de recherche au Canada / 2020 - 2021
Lead researcher :
Ahmad Hamdan
Funding sources:
CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG)
Grant programs:
PVXXXXXX-Supplément à l’appui des étudiants, des stagiaires postdoctoraux et du personnel de soutien à la recherche COVID-19
Infrastructure de recherche sur les plasmas multiphasiques Projet de recherche au Canada / 2018 - 2021
Lead researcher :
Ahmad Hamdan
Funding sources:
FCI/Fondation canadienne pour l'innovation
Grant programs:
PVXXXXXX-Fonds des leaders
Bulk Synthesis of nanomaterials and plasma-based techniques Projet de recherche au Canada / 2019 - 2020
Lead researcher :
Ahmad Hamdan
Co-researchers :
Min Suk Cha
Funding sources:
King Abdullah University of Science and Technology
Grant programs:
Development of combustion-based approaches for nanoparticles synthesis Projet de recherche au Canada / 2018 - 2019
Lead researcher :
Ahmad Hamdan
Co-researchers :
Min Suk Cha
Funding sources:
King Abdullah University of Science and Technology
Grant programs:
Publications Expand all Collapse all
- Hamdan, A; Diamond, J*; Herrmann, A*. (2021). Dynamics of a pulsed negative nanosecond discharge on water surface and comparison with the positive discharge.Journal of Physics Communications. https://doi.org/10.1088/2399-6528/abe953
- Mohammadi, K., & Hamdan, A. (2021). Spark discharges in liquid heptane in contact with silver nitrate solution: Investigation of the synthesized particles. Plasma Processes and Polymers, 18(10), 2100083. https://doi.org/10.1002/ppap.202100083
- Glad, X*; Gorry, J*; Cha, M S; Hamdan, A. (2021). Synthesis of core–shell copper–graphite submicronic particles and carbon nano-onions by spark discharges in liquid hydrocarbons.Scientific Reports. https://doi.org/10.1038/s41598-021-87222-x
- Merciris, T*; Valensi, F; Hamdan, A. (2021). Synthesis of nickel and cobalt oxide nanoparticles by pulsed under water spark discharges.Journal of Applied Physics. https://doi.org/10.1063/5.0040171
- Hamdan, A; Diamond, J*. (2021). Electrical and optical characterization of a pulsed discharge in immiscible layered liquids: n-heptane and water with various electrical conductivity.Plasma Sources Science and Technology. https://doi.org/10.1088/1361-6595/abfbe8
- Hamdan A, Liu J L, Cha M S. (2021). Transformation of n-heptane using an in-liquid submerged microwave plasma jet of argon.Journal of Applied Physics. https://doi.org/10.1063/5.0036041
- Agati M, Boninelli S, Hamdan A. (2021). Atomic Scale Microscopy unveils the Growth Mechanism of 2D-like CuO Nanoparticle agglomerates produced via Electrical Discharges in Water.Materials Chemistry and Physics. https://doi.org/10.1016/j.matchemphys.2021.124244
- Hamdan, A; Liu, J L. (2021). Scenario of carbon-encapsulated particle synthesis by spark discharges in liquid hydrocarbons.Plasma Processes and Polymers. https://doi.org/10.1002/ppap.202100013
- Hamdan, A; El Abiad, D*; Cha, M S. (2021). Synthesis of silicon and silicon carbide nanoparticles by pulsed electrical discharges in dielectric liquids. Plasma Chemistry and Plasma Processing, 41(6), 1647-1660. https://doi.org/10.1007/s11090-021-10205-3
- Glad X*, Profili J*, Cha M S, Hamdan A. (2020). Synthesis of copper and copper oxide nanomaterials by electrical discharges in water with various electrical conductivities.Journal of Applied Physics. https://doi.org/10.1063/1.5129647
- Hamdan A, Gorry J*, Merciris T*, Margot J. (2020). Electrical characterization of positive and negative pulsed nanosecond discharges in water coupled with timeresolved light detection.Journal of Applied Physics. https://doi.org/10.1063/5.0010387
- Merciris T*, Valensi F, Hamdan A. (2020). Determination of the electrical circuit equivalent to a pulsed discharge in water: assessment of the temporal evolution of electron density and temperature.IEEE trans. plasma science. https://ieeexplore.ieee.org/document/9180000
- Hamdan A, Glad X*, Cha MS. (2020). Synthesis of copper and copper oxide nanomaterials by pulsed electric field in water with various electrical conductivities.Nanomaterials. https://doi.org/10.3390/nano10071347
- Merciris T*, Hamdan A, Dorval A*, Valensi F. (2020). Simplified Spark Pulser for Nanoparticles Generation.IEEE Transactions on Plasma Science. https://ieeexplore.ieee.org/document/9204755
- Hamdan A, Agati M, Boninelli S. (2020). Selective synthesis of 2D mesoporous CuO agglomerates by pulsed spark discharge in water.Plasma Chemistry and Plasma Processing. https://doi.org/10.1007/s11090-020-10126-7
- Hamdan A, Ridani D*, Diamond J*, Daghrir R. (2020). Pulsed nanosecond air discharge in contact with water: Influence of voltage polarity, amplitude, pulse width, and gap distance.Journal of Physics D: Applied Physics. https://doi.org/10.1088/1361-6463/ab8fde
- Hamdan A, Diamond J*, Stafford L. (2020). Time-resolved imaging of pulsed positive nanosecond discharge on water surface: plasma dots guided by water surface.Plasma Sources Science and Technology. https://doi.org/10.1088/1361-6595/abbd87
- Hamdan A, Gagnon C*, Aykul M*, Profili J*. (2019). Characterization of a microwave plasma jet (TIAGO) in-contact with water: Application in degradation of methylene blue dye.Plasma Processes and Polymers. https://doi.org/10.1002/ppap.201900157
- Hamdan A, Profili J*, Cha M S. (2019). Microwave plasma jet in water: effect of water electrical conductivity on plasma characteristics.Plasma Chemistry and Plasma Processing. https://doi.org/10.1007/s11090-019-10034-5
- J Diamond, J Profili, A Hamdan (2019) Characterization of various air plasma discharge modes in contact with water and their effect on the degradation of reactive dyes. Plasma Chem Plasma Process 1-16. https://link.springer.com/article/10.1007/s11090-019-10014-9
- A Hamdan, J L Liu, M S Cha (2018). Microwave plasma jet in water: characterization and feasibility to wastewater treatment. Plasma Chem Plasma Process 1-18. link.springer.com/article/10.1007/s11090-018-9918-y
- A Hamdan, M S Cha (2018). Carbon-based nanomaterial synthesis using nanosecond electrical discharges in immiscible layered liquids: n-heptane and water. Journal of Physics D: Applied Physics 51 244003 (9pp). iopscience.iop.org/article/10.1088/1361-6463/aac46f/pdf
- A Hamdan, H Kabbara, C Noel, J Ghanbaja, A Redjaimia, T Belmonte (2018). Synthesis of two-dimensional lead sheets by spark discharge in liquid nitrogen. Particuology (In Press). (www.sciencedirect.com/science/article/pii/S1674200118300300)
- J-L Liu, H W Park, A Hamdan, M S Cha (2018). In-liquid arc plasma jet and its application to phenol degradation. Journal of Physics D: Applied Physics 51 114005 (9pp) (iopscience.iop.org/article/10.1088/1361-6463/aaada2/meta)
- R.K. Gangwar, A. Hamdan, L. Stafford (2017). Nanoparticle synthesis by high-density plasma sustained in liquid organosilicon precursors. Journal of Applied Physics 122, 243301 (aip.scitation.org/doi/10.1063/1.5006479)
- A Hamdan, M S Cha, R Abdul Halim, D Anjum (2017). Synthesis of SiOC:H nanoparticles by electrical discharge in hexamethyldisilazane and water. Plasma Processes and Polymers 14 (12) (onlinelibrary.wiley.com/doi/10.1002/ppap.201700089/full)
- A Hamdan, H Kabbara, M-A Courty, M S Cha, T Belmonte (2017). Multi-Strands synthesis of carbon-metal nanocomposites by discharges in heptane between two metallic electrodes. Plasma Chem Plasma Process 1-22. (link.springer.com/article/10.1007/s11090-017-9816-8)
- A Hamdan, K Čerņevičs, M S Cha (2017). The effect of electrical conductivity on nanosecond discharges in distilled water and in methanol with argon bubbles. Journal of Physics D: Applied Physics 50 185207 (8pp) (iopscience.iop.org/article/10.1088/1361-6463/aa6969)
- A Hamdan, F Valade, J Margot, F Vidal, J-P Matte (2017). Space and time structure of helium pulsed surface-wave discharges at intermediate pressures (5 - 50 Torr). Plasma Sources Sci. Technol. 26 015001 (10pp). (iopscience.iop.org/article/10.1088/0963-0252/26/1/015001)
- G Al Makdessi, A Hamdan, J Margot, Richard Clergereaux (2017). Measurement of negatively-charged species by laser-induced photodetachment in a magnetically confined low-pressure argon-acetylene plasma. Journal Plasma Sources Science and Technology, 26(8), 085001 (9pp). (iopscience.iop.org/article/10.1088/1361-6595/aa7806/meta)
- A Hamdan, M S Cha (2016). Low-dielectric layer increases nanosecond electric discharges in distilled water. AIP Advances 6, 105112. (scitation.aip.org/content/aip/journal/adva/6/10/10.1063/1.4966589)
- A Hamdan, M S Cha (2016). Nanosecond Discharge in Bubbled Liquid n-Heptane: Effects of Gas Composition and Water Addition. IEEE Trans. Plas. Sci. 4(12), 2988-2994. (ieeexplore.ieee.org/document/7556309/)
- A Hamdan, M Cha (2016). The effects of gaseous bubble composition and gap distance on the characteristics of nanosecond discharges in distilled water. Journal of Physics D: Applied Physics 49, 245203. (iopscience.iop.org/article/10.1088/0022-3727/49/24/245203/pdf)
- A Hamdan, G Makdessi, J Margot (2016). Deposition of a-C:H films by RF magnetized plasma in Ar/C2H2 mixture at very low pressure. Thin Solid Films, 599, 84-97. (www.sciencedirect.com/science/article/pii/S0040609015013073)
- A Hamdan, M Cha (2015). Ignition modes of nanosecond discharge with bubbles in distilled water. Journal of Physics D: Applied Physics 48 (40), 405206. (iopscience.iop.org/article/10.1088/0022-3727/48/40/405206)
- A Hamdan, J Margot, F Vidal, J-P Matte (2015). Characterization of helium surface-wave plasmas at intermediate pressures (5–50 Torr): temperatures and density of metastable atoms in the 23S level. Journal of Physics D: Applied Physics, 48(3), 035202. (iopscience.iop.org/0022-3727/48/3/035202)
- M S Daoud, A Hamdan, J Margot (2015). Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas. AIP Advances 5, 107143. (scitation.aip.org/content/aip/journal/adva/5/10/10.1063/1.4935100)
- M S Daoud, A Hamdan, J Margot (2015). Axial- and radial-resolved electron density and excitation temperature of aluminum plasma induced by nanosecond laser: Effect of the ambient gas composition and pressure. AIP Advances 5, 117136. (scitation.aip.org/content/aip/journal/adva/5/11/10.1063/1.4936251)
- A Hamdan, C Noël, J Ghanbaja, T Belmonte (2014). Comparison of aluminium nanostructures created by discharges in various dielectric liquids. Plasma Chemistry and Plasma Processing, 1 – 14. (link.springer.com/article/10.1007/s11090-014-9564-y)
- A Hamdan, I Marinov, A Rousseau, T Belmonte (2014). Microdischarge ignition in liquid heptane. IEEE Transactions on Plasma Science, 42 2616–2617. (ieeexplore.ieee.org/xpls/abs_all.jsp)
- A Hamdan, C Noël, T Belmonte (2014). Synthesis of carbon fibres by electrical discharges in heptane. Materials Letters 135 115–118. (www.sciencedirect.com/science/article/pii/S0167577X14014268)
- A Hamdan, I Marinov, A Rousseau, T Belmonte (2014). Time-resolved imaging of nanosecond-pulsed micro-discharges in heptane, J. Phys. D: Appl. Phys. 47 055203 (8pp). (iopscience.iop.org/0022-3727/47/5/055203)
- T Belmonte, A Hamdan, F Kosior, C Noel, G Henrion (2014). Interaction of discharges with electrode surfaces in dielectric liquids: application to nanoparticles synthesis. J. Phys. D: Appl. Phys. 47 224016. (iopscience.iop.org/0022-3727/47/22/224016)
- J-N Audinot, A Hamdan, P Grysan, Y Fleming, C Noel, F Kosior, G Henrion, T Belmonte (2014). Combined SIMS and AFM study of complex structures of streamers on metallic multi-layers. Surface and Interface Analysis, 46 397–400. (onlinelibrary.wiley.com/doi/10.1002/sia.5635/abstract)
- A Hamdan, C Noël, F Kosior, G Henrion, T Belmonte (2013). Impacts created on various materials by micro-discharges in heptane: influence of the dissipated charge. Journal of Applied Physics 113, 043301. (scitation.aip.org/content/aip/journal/jap/113/4/10.1063/1.4780786)
- A Hamdan, C Noël, F Kosior, G Henrion, T Belmonte (2013). Dynamics of bubbles created by plasma in heptane for micro-gap conditions. J. Acoust. Soc. Am. 134 (2) 991–1000
- A Hamdan, C Noël, J Ghanbaja, S Migot-Choux, T Belmonte (2013). Synthesis of platinum embedded in amorphous carbon by micro-gap discharge in heptane. Materials Chemistry and Physics 142 199-206
- A Hamdan, F Kosior, C Noel, G Henrion, J-N Audinot, T Belmonte (2013). Plasma-surface interaction in heptane. Journal of Applied Physics, 113, 213303
- A Hamdan, J-N Audinot, C Noël, F Kosior, G Henrion, T Belmonte (2013). Interaction of streamer in heptane with metallic multi-layers. Journal of Appl. Surf. Sci. 274 378 – 391
- A Hamdan, J-N Audinot, S Migot-Choux, C Noel, F Kosior, G Henrion, T Belmonte (2013). Interaction of discharges in heptane with carpets of carbon nanotubes. Advanced Engineering Materials, 15 885 – 892
Additional Information
- Microwave plasma jet in water: characterization and feasibility to wastewater treatment
- Carbon-based nanomaterial synthesis using nanosecond electrical discharges in immiscible layered liquids: n-heptane and water
- Ignition modes of nanosecond discharge with bubbles in distilled water
- Comparison of aluminium nanostructures created by discharges in various dielectric liquids
- Time-resolved imaging of pulsed positive nanosecond discharge on water surface: plasma dots guided by water surface
- Synthesis of core–shell copper–graphite submicronic particles and carbon nano-onions by spark discharges in liquid hydrocarbo
- Transformation of n-heptane using an in-liquid submerged microwave plasma jet of argon
- Electrical and optical characterization of a pulsed discharge in immiscible layered liquids: n-heptane and water with various
News
Browse this profile on: