Passer au contenu

/ Département de physique

Rechercher

Navigation secondaire

Experts en : Physique de la matière condensée

Bianchi, Andrea

BIANCHI, Andrea

Professeur agrégé

Je suis un expert des expériences pour sonder les propriétés thermodynamiques, magnétiques, et du transport dans les champs magnétiques intense et à températures très basses. Mon expertise comprend la croissance et la caractérisation des matériaux de pointe entre autres des quasi-cristaux, des isolants fortement corrélés, et des supraconducteurs , et des aimants frustrés.

Lire plus…

Profil complet

BOUILLY, Delphine

Professeure sous octroi adjointe

Delphine Bouilly et son équipe assemblent des circuits et capteurs électroniques ultraminiaturisés permettant de sonder les molécules biologiques (ADN, protéines) à l’échelle de la molécule individuelle. En particulier, ils s’intéressent à mesurer la dynamique des interactions entre molécules ou des fluctuations à l’intérieur d’une seule molécule. Le but de ces travaux est de développer de nouveaux outils pour détecter les biomarqueurs associés à différents types de cancer, et de mieux comprendre la mécanique des macromolécules élémentaires, en vue d’informer la conception de médicaments et traitements.

Lire plus…

Profil complet

Côté, Michel

CÔTÉ, Michel

Professeur titulaire

Mes activités de recherche se concentrent dans l'application de la mécanique quantique pour le calcul des propriétés des matériaux. Plusieurs domaines m'intéressent, mais présentement mes travaux se concentrent sur le développement de nouveaux matériaux organiques pour des applications photovoltaïques, la compréhension des propriétés des supraconducteurs de haute température par approche ab initio, et l'étude des nanomatériaux comme les nanotubes.

J'utilise une approche théorique qui fait appel aux capacités des supercalculateurs afin de simuler les matériaux étudiés. Ces méthodes sont à la fine pointe des développements récents comme la théorie de la fonctionnelle de la densité ainsi que les méthodes basées sur la fonction de Green.

Lire plus…

Profil complet

Leonelli, Richard

LEONELLI, Richard

Directeur de département, Professeur titulaire

Lorsqu’un matériau semi-conducteur absorbe un photon, un électron est excité dans la bande de conduction, ce qui laisse un trou dans la bande de valence. L’interaction de Coulomb entre l’électron et le trou génère un état lié appelé exciton, qui contrôle en grande partie les propriétés optiques des semi-conducteurs. Il s’avère de plus que lorsque le milieu est structuré sur une échelle nanométrique, la réponse optique des semi-conducteurs est radicalement modifiée par le confinement quantique.

Mon programme de recherche est axé sur la dynamique des excitons lorsqu’ils sont créés dans des milieux nanostructurés afin de décrire comment l’énergie est absorbée et redistribuée dans le cadre d’une représentation en termes d’excitations collectives. Quoique de nature fondamentale, ce sujet est intimement lié avec le développement de l’excitonique, un domaine en émergence qui vise à concevoir et fabriquer de meilleurs dispositifs optiques pour des applications allant de l’éclairage au calcul quantique.

Lire plus…

Profil complet

WITCZAK-KREMPA, William

Professeur adjoint

William Witczak-Krempa, professeur adjoint au département de physique et titulaire de la Chaire de recherche du Canada sur les transitions de phase quantique, ciblera dans le cadre de ses travaux de recherche ces transitions de phase quantique—obtenues en appliquant de la pression ou un champ magnétique au matériau—en modifiant certains éléments, tels que la composition chimique de celui-ci.

Sa recherche théorique expliquera les propriétés des matériaux lors de ces transitions, alors qu’émergent de nouveaux états de la matière. Un exemple remarquable est la supraconductivité, alors que les électrons forment des paires, un peu comme des danseurs, qui se déplacent sans résistance.

Les transitions mènent à des modèles « dansants » complexes où les électrons accrochent des partenaires éloignés, ce qui soulève des questions comme : « Quelles sont les caractéristiques essentielles des nombreux modèles dansants? » et « Comment pouvons-nous les exploiter pour améliorer la modélisation numérique? »

La recherche de M. Witczak-Krempa utilisera des méthodes analytiques et numériques novatrices qui empruntent des données pertinentes d’autres disciplines, par exemple l’information quantique et la théorie des cordes.

Tout comme les connaissances au sujet des transitions de phase ordinaires, comme la glace qui fond, sont importantes pour la société, les connaissances à propos de leurs contreparties quantiques deviennent elles aussi cruciales. Les résultats obtenus par M. Witczak-Krempa jetteront un nouvel éclairage sur des phénomènes cruciaux qui touchent les matériaux, comme la conductivité à haute température. Les applications possibles de ces matériaux vont du transport de l’électricité à faible coût à la dynamique des ordinateurs quantiques.

Lire plus…

Profil complet